Blood flow regulates the development of vascular hypertrophy, smooth muscle cell proliferation, and endothelial cell nitric oxide synthase in hypertension.

نویسندگان

  • H Ueno
  • P Kanellakis
  • A Agrotis
  • A Bobik
چکیده

Blood flow participates in vascular remodeling during development and growth by regulating cell apoptosis and proliferation. However, its significance in the development of vascular hypertrophy and vascular remodeling in hypertensive patients is not known. We investigated how changing blood flow through the common carotid artery (CA) of young adult rats rendered hypertensive via aortic coarctation affects CA hypertrophy and/or remodeling responses to hypertension. Blood flow was reduced by approximately 50% as a result of ligation of the external CA immediately after hypertension was induced, and the effects of that procedure were compared with those in similarly treated normotensive rats. Reducing blood flow in the hypertensive animals markedly augmented the development of CA hypertrophy over the ensuing 14 days by increasing the vessel wall cross-sectional area. In those animals, CA lumen size was unaltered by reducing blood flow, as was CA structure in normotensive animals. The greater hypertrophy in the hypertensive animals with reduced blood flow was associated with enhanced smooth muscle cell (SMC) proliferation 3 days after the hemodynamic changes were induced. There also appeared to be more extensive remodeling of the endothelium in the hypertensive animals with normal flow; this was indicated by the greater frequency of apoptotic endothelial cells at that time. This reduction in blood flow also attenuated endothelial cell nitric oxide synthase expression in hypertensive animals but not in normotensive animals. Severe reductions in blood flow ( approximately 90%) were required to reduce endothelial cell nitric oxide synthase in the normotensive animals. Increasing CA nitric oxide levels by perivascular application of S-nitroso-N-acetylpenicillamine (SNAP) to the CAs of hypertensive animals with reduced endothelial cell nitric oxide synthase attenuated the greater SMC proliferation. Thus, reduced blood flow in hypertensive animals promotes hypertrophy by enhancing SMC proliferation via mechanisms that reduce the inhibitory effects of nitric oxide on SMC proliferation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PULMONARY VASCULAR MUSCLE PROLIFERATION AS A RESULT OF PROTEIN AND mRNA-eNOS ALTERATIONS IN A RAT MODEL OF CHF

Endothelial Nitric Oxide Synthase (eNOS) produces nitric oxide (NO) from L-arginine and is important for the maintenance of cardiovascular homeostasis. Congestive heart failure (CHF) generally results in increased pulmonary blood flow and if untreated leads to pulmonary hypertension and end stage heart failure. We therefore hypothesized that increased pulmonary flow without changes in pres...

متن کامل

[Clinical significance of nitric oxide in hypertension].

Vascular endothelial cells produce various biologically active factors regulating blood pressure, coagulation, and possibly cell growth of the vascular wall. Of the factors, nitric oxide (NO) has been the object of attention because of its quite simple molecular structure and variety of biological functions. In the present review, we focused on the physiologic and pathologic aspects of NO in hy...

متن کامل

Regulation of retinal angiogenesis by endothelial nitric oxide synthase signaling pathway

Angiogenesis plays an essential role in embryo development, tissue repair, inflammatory diseases, and tumor growth. In the present study, we showed that endothelial nitric oxide synthase (eNOS) regulates retinal angiogenesis. Mice that lack eNOS showed growth retardation, and retinal vessel development was significantly delayed. In addition, the number of tip cells and filopodia length were sig...

متن کامل

Endothelium Derived Nitric Oxide Synthase Negatively Regulates the PDGF-Survivin Pathway during Flow-Dependent Vascular Remodeling

Chronic alterations in blood flow initiate structural changes in vessel lumen caliber to normalize shear stress. The loss of endothelial derived nitric oxide synthase (eNOS) in mice promotes abnormal flow dependent vascular remodeling, thus uncoupling mechanotransduction from adaptive vascular remodeling. However, the mechanisms of how the loss of eNOS promotes abnormal remodeling are not known...

متن کامل

Nitric oxide in hypertension: relationship with renal injury and left ventricular hypertrophy.

Hypertension is accompanied by architectural changes in the kidney, heart, and vessels that are often maladaptive and can eventually contribute to end-organ disease such as renal failure, heart failure, and coronary disease. Nitric oxide, an endogenous vasodilator and antithrombotic agent synthesized in the endothelium by a constitutive nitric oxide synthase, inhibits growth-related responses t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Hypertension

دوره 36 1  شماره 

صفحات  -

تاریخ انتشار 2000